Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13960, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230521

RESUMO

Data encoded in molecules offers opportunities for secret messaging and extreme information density. Here, we explore how the same chemical and physical dimensions used to encode molecular information can expose molecular messages to detection and manipulation. To address these vulnerabilities, we write data using an object's pre-existing surface chemistry in ways that are indistinguishable from the original substrate. While it is simple to embed chemical information onto common objects (covers) using routine steganographic permutation, chemically embedded covers are found to be resistant to detection by sophisticated analytical tools. Using Turbo codes for efficient digital error correction, we demonstrate recovery of secret keys hidden in the pre-existing chemistry of American one dollar bills. These demonstrations highlight ways to improve security in other molecular domains, and show how the chemical fingerprints of common objects can be harnessed for data storage and communication.

2.
Chem Sci ; 12(15): 5464-5472, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34163768

RESUMO

Autocatalysis is fundamental to many biological processes, and kinetic models of autocatalytic reactions have mathematical forms similar to activation functions used in artificial neural networks. Inspired by these similarities, we use an autocatalytic reaction, the copper-catalyzed azide-alkyne cycloaddition, to perform digital image recognition tasks. Images are encoded in the concentration of a catalyst across an array of liquid samples, and the classification is performed with a sequence of automated fluid transfers. The outputs of the operations are monitored using UV-vis spectroscopy. The growing interest in molecular information storage suggests that methods for computing in chemistry will become increasingly important for querying and manipulating molecular memory.

3.
IEEE Trans Nanobioscience ; 19(3): 378-384, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142450

RESUMO

Molecular data systems have the potential to store information at dramatically higher density than existing electronic media. Some of the first experimental demonstrations of this idea have used DNA, but nature also uses a wide diversity of smaller non-polymeric molecules to preserve, process, and transmit information. In this paper, we present a general framework for quantifying chemical memory, which is not limited to polymers and extends to mixtures of molecules of all types. We show that the theoretical limit for molecular information is two orders of magnitude denser by mass than DNA, although this comes with different practical constraints on total capacity. We experimentally demonstrate kilobyte-scale information storage in mixtures of small synthetic molecules, and we consider some of the new perspectives that will be necessary to harness the information capacity available from the vast non-genomic chemical space.


Assuntos
Computadores Moleculares , DNA/química , Armazenamento e Recuperação da Informação/métodos , Nanotecnologia/métodos
4.
Nat Commun ; 11(1): 691, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019933

RESUMO

Multicomponent reactions enable the synthesis of large molecular libraries from relatively few inputs. This scalability has led to the broad adoption of these reactions by the pharmaceutical industry. Here, we employ the four-component Ugi reaction to demonstrate that multicomponent reactions can provide a basis for large-scale molecular data storage. Using this combinatorial chemistry we encode more than 1.8 million bits of art historical images, including a Cubist drawing by Picasso. Digital data is written using robotically synthesized libraries of Ugi products, and the files are read back using mass spectrometry. We combine sparse mixture mapping with supervised learning to achieve bit error rates as low as 0.11% for single reads, without library purification. In addition to improved scaling of non-biological molecular data storage, these demonstrations offer an information-centric perspective on the high-throughput synthesis and screening of small-molecule libraries.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Biotecnologia , Espectrometria de Massas , Mimetismo Molecular , Estrutura Molecular , Nanotecnologia , Bibliotecas de Moléculas Pequenas/síntese química
5.
PLoS One ; 14(7): e0217364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269053

RESUMO

Biomolecular information systems offer exciting potential advantages and opportunities to complement conventional semiconductor technologies. Much attention has been paid to information-encoding polymers, but small molecules also play important roles in biochemical information systems. Downstream from DNA, the metabolome is an information-rich molecular system with diverse chemical dimensions which could be harnessed for information storage and processing. As a proof of principle of small-molecule postgenomic data storage, here we demonstrate a workflow for representing abstract data in synthetic mixtures of metabolites. Our approach leverages robotic liquid handling for writing digital information into chemical mixtures, and mass spectrometry for extracting the data. We present several kilobyte-scale image datasets stored in synthetic metabolomes, which can be decoded with accuracy exceeding 99% using multi-mass logistic regression. Cumulatively, >100,000 bits of digital image data was written into metabolomes. These early demonstrations provide insight into some of the benefits and limitations of small-molecule chemical information systems.


Assuntos
Bases de Dados Factuais , Metaboloma , Metabolômica
6.
ACS Nano ; 11(5): 4907-4915, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28485922

RESUMO

In this article, we introduce a flexible technique for high-throughput solid-state nanopore analysis of single biomolecules. By confining the electrolyte to a micron-scale liquid meniscus at the tip of a glass micropipette, we enable automation and reuse of a single solid-state membrane chip for measurements with hundreds of distinct nanopores per day. In addition to overcoming important experimental bottlenecks, the microscale liquid contact dramatically reduces device capacitance, which is a key limiting factor to the speed and fidelity of solid-state nanopore sensor recordings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...